气象因素对二氧化碳和甲烷通量影响的研究:阿拉斯加北极苔原案例

举报
此星光明 发表于 2025/04/30 20:16:16 2025/04/30
【摘要】 CARVE: L1 In-situ Carbon and CH4 Flux and Meteorology at EC Towers, Alaska, 2011-2015简介该数据集提供了位于阿拉斯加北极苔原的三个涡流协方差塔站的固定仪器的地面原位通量和气象科学数据。2011 年至 2015 年间,除了标准气象和环境变量外,每半小时报告一次位于阿拉斯加阿特卡苏克、巴罗和伊沃图克站点的二氧化碳...

CARVE: L1 In-situ Carbon and CH4 Flux and Meteorology at EC Towers, Alaska, 2011-2015

简介

该数据集提供了位于阿拉斯加北极苔原的三个涡流协方差塔站的固定仪器的地面原位通量和气象科学数据。2011 年至 2015 年间,除了标准气象和环境变量外,每半小时报告一次位于阿拉斯加阿特卡苏克、巴罗和伊沃图克站点的二氧化碳、甲烷、水蒸气和潜能通量的真实和空白观测数据。这三个站点在阿拉斯加北坡形成了一个 300 公里的南北横断面,每个站点代表不同的北极植被群落。这些塔式测量创建了地球上最大、最不稳定的碳储量之一的长期记录。这些塔式观测数据用于确定二氧化碳和甲烷通量的季节和年际模式,以及它们与环境因素变化的关系。


摘要

Table 1. Column headers, description, units, and instrument from Atqasuk (ATQ), Barrow (BRW), and Ivotuk (IVO) eddy covariance towers. 

Note: Quality flags are: 0 = observation value; 1 = interpolated value

Column Header Description Units Instrument
BP Barometric pressure mbar/10 CS106
CH4_Flux_7700 CH4 flux umol m-2 s-1 LI-7700
CH4_Flux_gf_7700 Gap-filled CH4 flux umol m-2 s-1 LI-7700
CH4_q_7700 Quality flag *
CH4_Flux_LGR CH4 flux umol m-2 s-1 LGR FGGA
CH4_Flux_gf_LGR Gap-filled CH4 flux umol m-2 s-1 LGR FGGA
CH4_q_LGR Quality flag *
CO2_Flux_7200 CO2 flux umol m-2 s-1 LI-7200
CO2_Flux_gf_7200 Gap-filled CO2 flux umol m-2 s-1 LI-7200
CO2_q_7200 Quality flag **
CO2_Flux_LGR CO2 flux umol m-2 s-1 LGR FGGA
CO2_Flux_gf_LGR Gap-filled CO2 flux umol m-2 s-1 LGR FGGA
CO2_q_LGR Quality flag **
Date Date yyyy-mm-dd HH:MM
Day Day of year and decimal hour DOY.H
Dsnow Snow depth m SR50a
ER_7200 Ecosystem respiration umol m-2 s-1 LI-7200
ER_LGR Ecosystem respiration umol m-2 s-1 LGR FGGA
G_1 Ground heat flux profile 1 Wm-2 HFT3
G_2 Ground heat flux profile 2 Wm-2 HFT3
G_3 Ground heat flux profile 3 Wm-2 HFT3
G_4 Ground heat flux profile 4 Wm-2 HFT3
Global_radiation Solar radiation Wm-2 Delta T v3
GPP_7200 Gross primary production umol m-2 s-1 LI-7200
GPP_LGR Gross primary production umol m-2 s-1 LGR FGGA
H_7200 Sensible heat flux Wm-2 CSAT-3
H_LGR Sensible heat flux Wm-2 CSAT-3
H2O_Flux_7200 H2O flux umol m-2 s-1 LI-7200
H2O_Flux_LGR H2O flux umol m-2 s-1 LGR FGGA
H2O_Flux_gf_LGR Gap-filled H2O flux umol m-2 s-1 LGR FGGA
H2O_q_LGR Quality flag **
LE_Flux_7200 Latent energy flux Wm-2 LI-7200
LE_Flux_gf_7200 Gap-filled latent energy flux Wm-2 LI-7200
LE_Flux_q_7200 Quality flag **
LE_LGR Latent energy flux Wm-2 LGR FGGA
LE_Flux_gf_LGR Gap-filled latent energy flux Wm-2 LGR FGGA
LE_q_LGR Quality flag **
NEE_7200 Net ecosystem exchange g m-2 s-1 LI-7200
NEE_LGR Net ecosystem exchange g m-2 s-1 LGR FGGA
P1_SWC_5 Soil moisture at -5cm, profile 1 VWC CS616
P1_SWC_10 Soil moisture at -10cm, profile 1 VWC CS616
P1_SWC_15 Soil moisture at -15cm, profile 1 VWC CS616
P1_SWC_20 Soil moisture at -20cm, profile 1 VWC CS616
P1_SWC_30 Soil moisture at -30cm, profile 1 VWC CS616
P2_SWC_5 Soil moisture at -5cm, profile 2 VWC CS616
P2_SWC_10 Soil moisture at -10cm, profile 2 VWC CS616
P2_SWC_15 Soil moisture at -15cm, profile 2 VWC CS616
P2_SWC_20 Soil moisture at -20cm, profile 2 VWC CS616
P2_SWC_30 Soil moisture at -30cm, profile 2 VWC CS616
P3_SWC_5 Soil moisture at -5cm, profile 3 VWC CS616
P3_SWC_15 Soil moisture at -15cm, profile 3 VWC CS616
P3_SWC_30 Soil moisture at -30cm, profile 3 VWC CS616
PARdown Photosynthetically active radiation incoming µmols-1m-2 LI-190SB
PARup Photosynthetically active radiation outgoing µmols-1m-2 LI-190SB
PPT Precipitation mm TE525WS
RH Relative humidity % HMP-45c
Rnet Net radiation Wm-2 REBS Q7
Rsolar Solar radiation Wm-2 CMP3
SoilT1_Surf Soil temperature at surface, profile 1 C Type E thermocouple
SoilT1_5 Soil temperature at -5cm, profile 1 C Type E thermocouple
SoilT1_15 Soil temperature at -15cm, profile 1 C Type E thermocouple
SoilT1_30 Soil temperature at -30cm, profile 1 C Type E thermocouple
SoilT1_40 Soil temperature at -40cm, profile 1 C Type E thermocouple
SoilT2_Surf Soil temperature at surface, profile 2 C Type E thermocouple
SoilT2_5 Soil temperature at -5cm, profile 2 C Type E thermocouple
SoilT2_15 Soil temperature at -15cm, profile 2 C Type E thermocouple
SoilT2_30 Soil temperature at -30cm, profile 2 C Type E thermocouple
SoilT2_40 Soil temperature at -40cm, profile2 C Type E thermocouple
SoilT3_Surf Soil temperature at surface, profile 3 C Type E thermocouple
SoilT3_5 Soil temperature at -5cm, profile 3 C Type E thermocouple
SoilT3_15 Soil temperature at -15cm, profile 3 C Type E thermocouple
SoilT3_30 Soil temperature at -30cm, profile 3 C Type E thermocouple
SoilT3_40 Soil temperature at -40cm, profile 3 C Type E thermocouple
SoilT4_Surf Soil temperature at surface, profile 3 C Type E thermocouple
SoilT4_5 Soil temperature at -5cm, profile 4 C Type E thermocouple
SoilT4_15 Soil temperature at -15cm, profile 4 C Type E thermocouple
SoilT4_30 Soil temperature at -30cm, profile 4 C Type E thermocouple
SoilT4_40 Soil temperature at -40cm, profile 4 C Type E thermocouple
Tair Air temperature C HMP-155A
Tsurf Ground surface temperature C SI-111
u*_7200 Friction velocity ms-1 LI-7200
u*_LGR Friction velocity ms-1 LGR FGGA
WD Wind direction, degrees from north ° Young 05103
WS Wind speed ms-1 Young 05103

* Gap filling done using methods described in Watts et al, 2014

 

代码


!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="CARVE_L1_Ground_Flux_1424",
    cloud_hosted=True,
    bounding_box=(-157.41, 68.49, -155.75, 71.32),
    temporal=("2011-05-30", "2016-01-07"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")


引用

Baldocchi, D.D., B. B. Hicks, and T. P. Meyers. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69, 1331–1340.

Watts, J.D., J.S. Kimball, F.J.W. Parmentier, T. Sachs, J. Rinne, D. Zona, W. Oechel, T. Tagesson, M. Jackowicz-Korczynski, and M. Aurela. 2014. A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO2 and CH4 fluxes. Biogeosciences 11:1961-1980.

【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: [email protected]
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。